
oice over IP: Issues and Challenges

http://www.cis.ohio-state.edu/~jaii

Joice over IP: Why?

Sample Products and Services

3 Technical Issues

l Other Issues

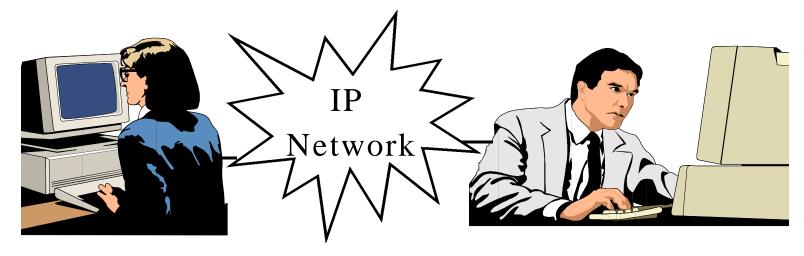
rotocols

H.323 Standard

Market

nternational VOIP calls could cost 1/5th of normal ates ⇒ Big share of \$18B US to foreign calls. 315B within Europe.

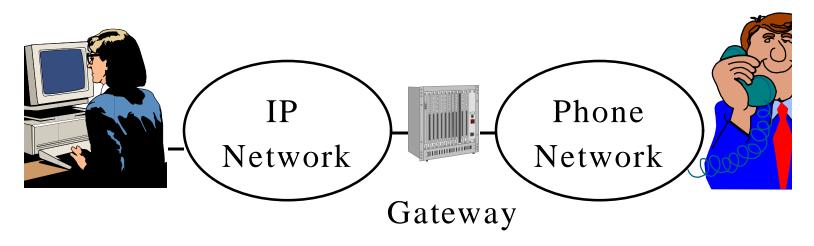
500,000 IP telephony users at the end of 1995.


5% of all voice calls on IP/Internet by 2000

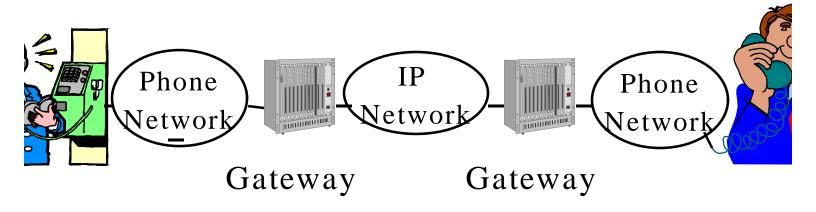
⇒ 10M users and \$500M in VOIP product sales in .999 [IDC]

JS VOIP service will grow from \$30M in 1998 to 32B in 2004 [Forester Research]

32B in 2001 and \$16B by 2004 [Frost & Sullivan]


Scenario 1: PC to PC

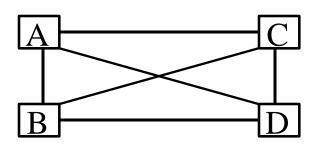
Need a PC with sound card

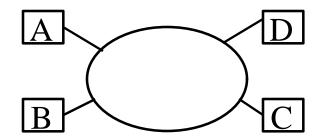

IP Telephony software: Cuseeme, Internet Phone, ... Video optional

cenario 2: PC to Phone

Need a gateway that connects IP network to phone network (Router to PBX)

Scenario 3: Phone to Phone




Need more gateways that connect IP network to pho letworks

The IP network could be dedicated intra-net or the nternet.

The phone networks could be intra-company PBXs (he carrier switches

Advantages

Private voice networks require n(n-1) access links.

Private data networks require only n access links.

Voice has per-minute distance sensitive charge Data has flat time-insensitive distance-insensitive sharge

Easy alternate routing ⇒ More reliability

No 64kbps bandwidth limitation

⇒ Easy to provide high-fidelity voice

Applications

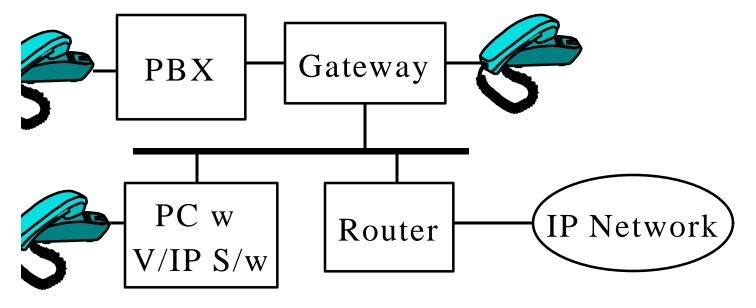
Any voice communication where PC is already used

- Document conferencing
- Helpdesk access
- On-line order placement
 nternational callbacks
 many operators use voice over frame relay)
 ntranet telephony
 nternet fax

Sample Products

VocalTec Internet Phone: PC to PC.

Microsoft NetMeeting: PC to PC. Free.


nternet PhoneJACK: ISA card to connect a standard hone to PC. Works with NetMeeting, InternetPhonetc. Provides compression.

nternet LineJACK: Single-line gateway.

Micom V/IP Family:

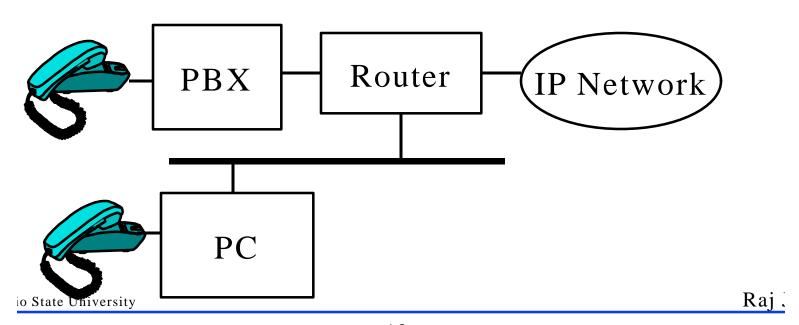
- Analog and digital voice interface cards
- O PC and/or gateway

Products (Cont)

- Features:
 - Compression
 - □ Phone number to IP address translation.
 - □ Supports RSVP.
 - Limits number of calls.

Products (Cont)

VocalTec Internet Telephony Gateway:


- Similar to Micom V/IP
- Interactive voice response system for problem reporting
- Allows WWW plug in
- Can monitor other gateways and use alternate routes including PSTN
- Sold to Telecom Finland. New Zealand Telecom.

Lucent's Internet Telephony Server: Gateway | Lucent PathStar Access Server

Products (Cont)

CISCO 2600 Routers: Voice interface cards (VICs) Reduces one hop.

3aynetworks, 3COM, and other router vendors have innounced product plans

Sample Services

DT Corporation offers Net2Phone, Carrier2Phone, 'hone2Phone services.

Global Exchange Carrier offers international calls using VocalTec InternetPhone s/w and gateways west offers 7.5¢/min VOIP Q.talk service in 16 tities.

TXC provides infrastructure and management to Internet Telephone Service Providers (ITSPs)'
America On-line offers 9¢/min service.

AT&T announced 7.5¢/min VOIP trials in 9 US citic

Services (Cont)

Other trials: USA Global link, Delta 3, WorldCom, MCI, U.S. West, Bell Atlantic, Sprint, AT&T/Japan, CDD/Japan, Dacom/Korea, Deutsche Telekom in Germany, France Telecom, Telecom Finland, and New Zealand Telecom.

Level 3 is building a nation wide IP network for elephony.

3ell Canada has formed 'Emergis' division.

3ellcore has formed 'Soliant Internet Systems' unit 3ell Labs has formed 'Elemedia' division

Technical Issues

Large Delay

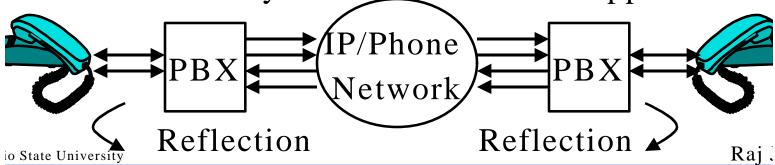
- Normal Phone: 10 ms/kmile ⇒ 30 ms coast-tocoast
- G.729: 10 ms to serialize the frame + 5 ms look ahead + 10 ms computation = 25 ms one way algorithmic delay
- \circ G.723.1 = 100 ms one-way algorithmic delay
- O Jitter buffer = 40-60 ms
- \circ Poor implementations \Rightarrow 400 ms in the PC
- In a survey, 77% users found delay unacceptable.

Technical Issues (Cont)

Delay Jitter: Need priority for voice packets.

Shorter packets? IP precedence (TOS) field.

Frame length: 9 kB at 64 kbps = 1.125 s


Smaller MTU \Rightarrow Fragment large packets

Lost Packets: Replace lost packets by silence,

extrapolate previous waveform

Echo cancellation: 2-wire to 4-wire.

Some FR and IP systems include echo suppressors.

Technical Issues (Cont)

Silence suppression

Address translation: Phone # to IP. Directory servers

Telephony signaling: Different PBXs may use differ

ignaling methods.

3andwidth Reservations: Need RSVP.

Multiplexing: Subchannel multiplexing

⇒ Multiple voice calls in one packet.

Security: Firewalls may not allow incoming IP traf

Insecurity of internet

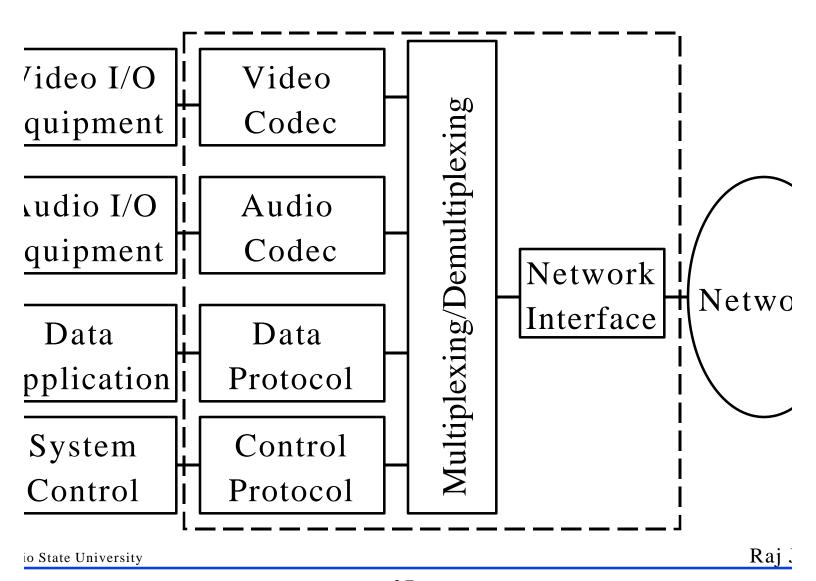
Voice compression: Load reduction

Other Issues

Per-minute distance-sensitive charge vs
lat time-insensitive distance-insensitive charge
Video requires a bulk of bits but costs little.
Voice is expensive. On IP, bits are bits.

National regulations and government monopolies

⇒ Many countries forbid voice over IP


n Hungary, Portugal, etc., it is illegal to access a we
ite with VOIP s/w. In USA, Association of

Celecommunications Carriers (ACTA) petitioned FC

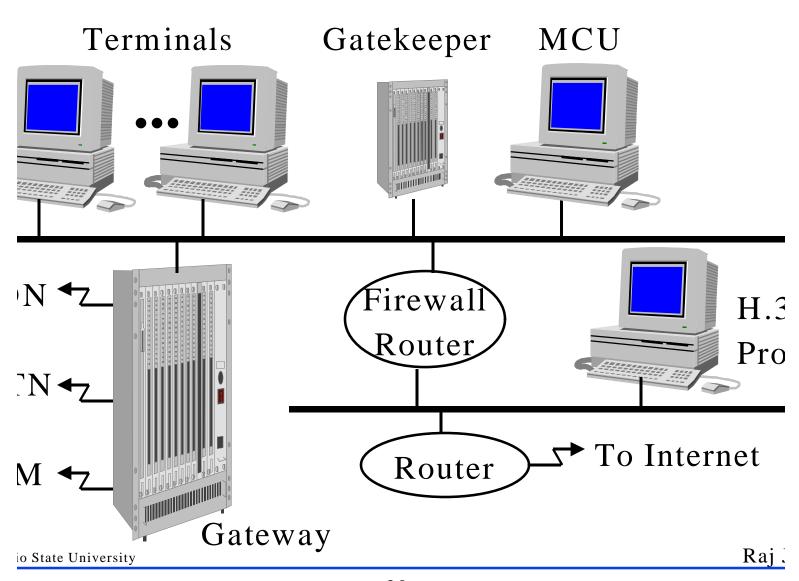
o levy universal access charges in ISPs

Modem traffic can't get more than 2400 bps.

elephony/Conferencing System

Conferencing Standards

etwork	ISDN	ATM	PSTN	LAN	POTs	
onf. Std.	H.320	H.321	H.322	H.323 V1/V2	H.324	
ear	1990	1995	1995	1996/1998	1996	
ıdio	G.711,	G.711,	G.711,	G.711,	G.723.1,	
odec	G.722,	G.722,	G.722,	G.722,	G.729	
	G.728	G.728	G.728	G.723.1,		
				G.728, G.729		
ıdio Rates	64, 48-64	64, 48-64,	64, 48-64,	64, 48-64, 16,	8, 5.3/6.3	
ps		16	16	8, 5.3/6.3		
ldeo	H.261	Н.261,	H.261,	H.261	H.261	
odec		H.263	H.263	H.263	H.263	
ata Sharing	T.120	T.120	T.120	T.120	T.120	
ontrol	Н.230,	H.242	H.242,	H.245	H.245	
	H.242		H.230			
ultiplexing	H.221	H.221	H.221	H.225.0	H.223	
gnaling	Q.931	Q.931	Q.931	Q.931	-	


H.323 Protocols

Multimedia over LANs

Provides component descriptions, signaling procedures, call control, system control, audio/video codecs, data protocols

Video	Audio	Control and Management					
H.261 H.263	G.711, G.722, G.723.1, G.728, G.729	RTCP	H.225.0 RAS	H.225.0 Signaling	H.245 Control	T.12	
RTP			X.224 Class 0			T.12	
	UDP		TCP				
Network (IP)							
	Dat	alin	k (IEEE 8	302.3)			
io State University						Raj .	

H.323 Components

Voice over IP products and services are being rolled deal for computer-based communications

P needs QoS for acceptable quality

A number of working group at IETF are working on H.323 provides interoperability

References

See

ittp://www.cis.ohio-state.edu/~jain/refs/ref_voip.htr
or a detailed list of references.

Thank You!

